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The gut microbiome is structured by social groups in a variety of host taxa. Whether this pattern is driven
by relatedness, similar diets or shared social environments is under debate because few studies have had
access to the data necessary to disentangle these factors in wild populations. We investigated whether
diet, relatedness or the 1 m proximity network best explains differences in the gut microbiome among 45
female colobus monkeys in eight social groups residing at Boabeng-Fiema, Ghana. We combined de-
mographic and behavioural data collected during May e August 2007 and October 2008 e April 2009
with 16S rRNA sequencing of faecal samples collected during the latter part of each observation period.
Depending on the beta diversity index, social group identity explained 19e28% of the variation in gut
microbiome beta diversity. When comparing the predictive power of dietary dissimilarity, relatedness
and connectedness in the 1 m proximity network, the models with social connectedness received the
strongest support, even in our analyses that excluded within-group dyads. This novel finding indicates
that microbes may be transmitted during intergroup encounters, which could occur either indirectly via
shared environments or directly via social contact. Lastly, some of the gut microbial taxa that appear to
be transmitted via 1 m proximity are associated with digestion of plant material. Further research is
needed to investigate whether this type of gut microbe transmission yields health benefits, which could
provide an incentive for the formation and maintenance of social bonds within and between social
groups.
© 2020 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
The gut microbiome consists of thousands of species that affects
its host's nutritional status, immune function and behaviour
(McFall-Ngai et al., 2013). Gut microbiome composition is associ-
ated with parasite resistance and stress response of hosts in the
wild (Koch & Schmid-Hempel, 2011; Vl�ckov�a et al., 2018) and with
obesity in captive settings (Turnbaugh et al., 2006). Because of
these potential health consequences, it is important to investigate
the acquisition and maintenance of the gut microbiome (Amato,
2016; Archie & Tung, 2015), especially in wild vertebrate
populations.

The gut microbiome of individuals or social groups become
more distinct with geographical distance (Barelli et al., 2015;
Grieneisen et al., 2019; Hansen et al., 2019; Hird, Carstens, Cardiff,
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Dittmann, & Brumfield, 2014; Lankau, Hong, & Mackie, 2012;
Phillips et al., 2012), and the microbiome is structured by social
group or family co-residency in a variety of host taxa, such as
humans (Lax et al., 2014; Song et al., 2013; Yatsunenko et al., 2012),
nonhuman primates (Amato et al., 2017; Degnan et al., 2012;
Goodfellow et al., 2019; Orkin, Webb et al., 2019; Springer et al.,
2017; Tung et al., 2015), carnivores (Leclaire, Nielsen, & Drea,
2014; Theis et al., 2013), birds (White et al., 2010) and insects
(Anderson et al., 2012; Koch & Schmid-Hempel, 2011). Recent
studies of nonhuman primates further highlight the importance of
social groups in structuring gut microbiomes. The gut microbiome
of immigrant male yellow baboons, Papio cynocephalus, converged
over time with that of their new group members (Grieneisen,
Livermore, Alberts, Tung, & Archie, 2017), and the gut micro-
biomes of white-thighed black-and-white colobus, Colobus veller-
osus, diverged over the course of 9 months after a social group
fissioned into two daughter groups (Goodfellow et al., 2019).

Within host populations, gut microbiomes diverge with
increasing home range separation, potentially due to dietary
evier Ltd. All rights reserved.
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differences, lower degrees of relatedness or lack of shared social
environments (Archie & Tung, 2015; Bj€ork, Dasari, Grieneisen, &
Archie, 2019). Diet is suggested to be one of the most important
factors affecting the gut microbiome (Voreades, Kozil, & Weir,
2014). Gut microbial composition fluctuates within hosts with
seasonal or experimental dietary changes (Hicks et al., 2018;
Mallott, Amato, Garber, & Malhi, 2018; Orkin, Campos et al.,
2019). Dietary similarities, both within and between groups, may
explain whether social groups have distinct gut microbiomes
(Orkin, Webb et al., 2019). Alternatively, gut microbial similarity
among group members could also reflect the genetic similarity of
hosts when some closely related individuals remain together in
their natal groups. Because the host genetic make-up can affect
microbe colonization (Spor, Koren, & Ley, 2011; van Opstal &
Bordenstein, 2015) and genomic regions are associated with gut
microbial composition (Bonder et al., 2016; Leamy et al., 2014), gut
microbial similarity is expected to increase with genetic
relatedness.

It is therefore surprising that genetic differentiation between
baboon populations was a poor predictor of their gut microbiome
(Grieneisen et al., 2019), and that relatedness did not have a sig-
nificant effect on the gut microbiome in some studies of humans
(Rothschild et al., 2018), nonhuman primates (Grieneisen et al.,
2017; Moeller et al., 2016) and carnivores (Leclaire et al., 2014).
Moeller et al. (2016) suggested that this may be due to an over-
riding effect of transmission among unrelated social partners. So-
cial transmission may occur indirectly via shared environments or
directly via physical contact between hosts, however, these two
transmission routes are hard to tease apart in observational studies
where individuals in close physical contact also share environ-
ments (Archie & Tung, 2015). Lax et al. (2014) suggested that
touching common surfaces may facilitate microbiome transmission
within households (i.e. indirect social transmission). Direct social
contact such as grooming or sitting in body contact further in-
creases microbiome transmission (i.e. direct social transmission)
between close social partners within social groups of monkeys
(black howler monkey, Alouatta pigra: Amato et al., 2017;
P. cynocephalus: Grieneisen et al., 2017; Tung et al., 2015) and le-
murs (red-bellied lemur, Eulemur rubriventer: Raulo et al., 2017).
Gut microbiomes are also more similar among socially connected
than disconnected siblings and married couples (Dill-McFarland
et al., 2019). Although social connectedness did not predict gut
microbiome similarity between nongroup members in Verreaux's
sifaka, Propithecus verreauxi, there may not be an association be-
tween intergroup interactions and gut microbiome similarity when
groups are rarely in close physical proximity, as is the case for si-
fakas (Perofsky, Lewis, Abondano, Di Fiore, & Meyers, 2017). Taken
together, these studies indicate that gut microbes are transmitted
via social interactions within social groups, while the between-
group social transmission of gut microbes has not yet been
demonstrated in wild primates.

To investigate whether the pattern of increasing between-
individual differences in the gut microbiome (i.e. beta diversity)
with home range separation is best explained by lower dietary
overlap, relatedness or social connectedness, we focus on the black-
and-white colobus monkeys, C. vellerosus, at Boabeng-Fiema,
Ghana. This is one of several rare species of arboreal leaf-eating
monkeys distributed across the forested regions of the African
tropics, and it is closely related to guerezas, Colobus guereza, and
western black-and-white colobus, Colobus polykomos (Ting, 2008).
At Boabeng-Fiema, all colobus social groups utilize a highly foliv-
orous diet, but the most important food species differ between
social groups (Saj & Sicotte, 2007; Teichroeb & Sicotte, 2009). More
seeds and fruits are available during the dry season, during which
they eat up to 43% of these food items (Teichroeb & Sicotte, 2017).
To break down hard-to-digest items in their primarily folivorous
diet (Saj & Sicotte, 2007; Teichroeb & Sicotte, 2009), they rely on
behavioural traits, physiological traits and their gut microbiome
(Amato et al., 2016; Lambert, 1998). Possibly due to constraints
imposed by their highly folivorous diet, colobus monkeys spend a
low percentage of their time engaging in direct social activities
such as grooming (Teichroeb, Saj, Paterson,& Sicotte, 2003). Female
colobus spend on average 3% of their time within 1 m and 0.1% of
their time grooming each female group member (Wikberg, Ting, &
Sicotte, 2014b). However, females still form preferred friendships,
which are only occasionally based on kinship and never based on
their relatively weakly expressed dominance hierarchies (Wikberg
et al., 2013, 2014b, 2015, 2014a). Instead, females prefer to affiliate
with females with similar immigration status (Wikberg, Ting, &
Sicotte, 2014a; 2014b) in this population where all males and half
of the females disperse (Sicotte et al., 2017; Teichroeb, Wikberg, &
Sicotte, 2011, 2009; Wikberg, Sicotte, Campos, & Ting, 2012). This
flexible female dispersal pattern results in social groups with
different female kin composition and some close maternal female
kin residing in different social groups (Wikberg et al., 2012).
Neighbouring social groups encounter each other in the large zones
of home range overlap on an almost daily basis. During these en-
counters, social groups sometimes chase each other away from food
trees, while at other times, they engage in affiliative or sexual
between-group interactions (Sicotte & MacIntosh, 2004; Teichroeb
& Sicotte, 2017).

The frequent between-group interactions coupled with varia-
tion in diet and relatedness within and between social groups
makes this a good study population to investigate whether the
pattern of increasing gut microbial beta diversity with home range
separation is best explained by lower degrees of dietary similarity,
relatedness or social connectedness. We take a cross-sectional
approach using observational and genetic data from eight social
groups to first test whether the gut microbiome was structured by
social groups. We then evaluated which factors explained gut
microbiome beta diversity between females across different social
groups. Although beta diversity within groups was best predicted
by the group's 1 m proximity network (Wikberg et al., n.d.), there
are greater differences in diet and relatedness between groups than
within groups. Therefore, we expected gut microbiome beta di-
versity not only to increase with distance in the 1 m proximity
network but also to decrease with dietary similarity and related-
ness. Finally, the significant predictor from the analyses above
(social connectedness) was used in a subsequent population-level
analysis of operational taxonomic unit (OTU) abundance to deter-
mine which microbial taxa may be socially transmitted. Our defi-
nition of social transmission includes both direct social
transmission via physical contact and indirect social transmission
via shared substrates (e.g. Perofsky et al., 2017), and we will not
attempt here to tease apart these two social transmission routes.
Males and females of all age classes were used to create social
networks, but the gut microbiome data are only available for adult
females. Therefore, our analyses of beta diversity focus on adult
females.

METHODS

Behavioural Data Collection

Demographic data have been collected since 2000 from the
black-and-white colobusmonkeys (C. vellerosus) at Boabeng-Fiema,
Ghana. In this study, we also use behavioural and ecological data as
well as DNA samples from eight social groups (Appendix, Fig. A1)
collected during two study periods: the rainy season MayeAugust
2007 and the pre-dry and dry seasons October 2008eApril 2009
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(Appendix, Table A1). During this period, the study groups con-
tained 3e9 adult (i.e. parous) females (Appendix, Table A1), 1e4
adult males and 8e24 immatures. Our research adheres to ASAB/
ABS Guidelines for the Use of Animals in Research and the laws of
Ghana, and data collection was approved by the Boabeng-Fiema
Monkey Sanctuary's management committee, Ghana Wildlife Di-
vision and the University of Calgary's Animal Care Committee (BI
2006-28, BI 2009-25).

We recorded each social group's location every hour using a
map with trails, roads, villages and large trees (>40 cm diameter at
breast height, DBH) in order to determine home ranges (Appendix,
Fig. A1). During 10 min focal samples (Altmann, 1974) of adult fe-
males, we continuously recorded all social behaviours (including
the identity of the interactant and the duration of the behaviour)
and plant species and part (i.e. mature leaf, young leaf, flower, fruit,
seed or other) for each ingested food item. Females fed on a total of
210 food itemeplant species combinations, and to assess dietary
differences, we calculated Sørensen dissimilarity indices using
ingested plant parts and plant species during focal samples. We
choose this diversity index because it only takes the presence or
absence of an ingested food item into account, which we have a
robust estimate of using the focal data. The Sørensen dissimilarity
indices in our data set had a high median value of 0.83 and were
lower within than between social groups (Appendix, Fig. A2).

During the first and second data collection period, we observed
61 and 285 between-group encounters (i.e. two social groups
located within 50 m of each other), respectively. Of these encoun-
ters, 53% lacked female aggression and 35% lackedmale aggression.
Because close proximity between individuals of different social
groups are rare and unlikely to be recorded during focal sampling,
we recorded approaches to 1 m ad libitum (Altmann,1974). Some of
these approaches only led to brief close proximity while others led
to prolonged contact like copulations, grooming and play. We
created an undirected proximity network based on the presence
and absence of approaches to 1 m between all individuals (N ¼ 177
adult females, adult males and immatures) present in the eight
study groups. We used the software UCINET (Borgatti, Everett, &
Freeman, 2002) to compute inverse shortest path length (i.e.
geodesic distance) in the 1 m proximity network (hereafter
referred to as social connectedness): 1/(the number of steps (i.e.
recorded interaction ties) in the shortest path from one individual
to another). Social groupmembers were in 1 m proximitywith each
other (i.e. an inverse path length of 1) or separated by two to three
partners (i.e. an inverse path length of 0.5 and 0.33) (Appendix,
Fig. A2). The inverse path length for males and females belonging
to different social groups ranged from 0 to 1 (see Results, Fig. 1,
Appendix, Fig. A2). The seemingly unconnected individuals in the
2007 data set were most likely unconnected because we only had
access to data collected from a 3-month period. These individuals
were connected and separated with up to eight steps in the
2008e2009 network, which was based on 6 months of data.

Genetic Data Collection

We collected faecal samples during JuneeAugust 2007 and
JanuaryeApril 2009. Immediately after a female defecated, we
collected approximately 1 g of faeces and dissolved it in 6 ml of
RNAlater. The samples were stored in a refrigerator at the field site
until the end of the field seasonwhen they were transported to the
Ting laboratory (University of Oregon, Eugene, OR, U.S.A.) and
stored in a -20 �C freezer. Note that we lack information on soil
type, which was driving between-site differences in the gut
microbiomes in a large-scale study of terrestrial baboons
(Grieneisen et al., 2019). However, our samples were collected from
arboreal primates within a small study area, and sampling site does
not have a significant effect on beta diversity in our study popu-
lation (Goodfellow et al., 2019).

We extracted DNA from the samples and genotyped the extracts
at 17 short tandem repeat loci (STR) as previously described
(Wikberg et al., 2012). To make sure that the samples used in the
relatedness and gut microbiome analyses were collected from the
correct individual, we compared the STR genotypes obtained from
these samples with a second sample collected from the same in-
dividual at a different time. We calculated dyadic estimated relat-
edness values (R) in MLRelate (Kalinowski, Wagner, & Taper, 2006)
because this method provided the most accurate relatedness esti-
mates in our study population (Wikberg et al., 2012). We used R
values calculated from STR loci rather than theoretical relatedness
(r) calculated from pedigrees, because R values predict kinship
relatively accurately in our study population (Wikberg et al., 2014a)
and they are more accurate than r in studies such as ours with
limited access to pedigrees (Forstmeier, Schielzeth, Mueller,
Ellegren, & Kempenaers, 2012; Robinson, Simmons, &
Kennington, 2013). The median female relatedness was low both
within and between social groups, but there were at least some
closely related females residing in the same social groups
(Appendix, Fig. A2).

For generating the gut microbial data, we conducted fresh DNA
extracts from 61 previously genotyped samples from 45 females
(Appendix, Table A1) using the QIAmp DNA Stool Mini Kit (Qiagen,
Valencia, CA, U.S.A.) with a modified protocol. More details
regarding the extraction protocol are presented in the Appendix
and in Goodfellow et al. (2019). The V4 hypervariable region of
the bacterial 16S ribosomal RNA gene was amplified and libraries
were prepared using the 515F and 806R primers containing 50

Illumina adapter tails and dual indexing barcodes, and libraries
were sequenced as part of a 150 bp paired-end sequencing run on
the Illumina NextSeq platform following Goodfellow et al. (2019).
We obtained a mean read depth of 127 628 per sample (range 86
924e166 438). Then, we used a custom pipeline (https://github.
com/kstagaman/Process_16S) for quality filtering and assembly
(see Appendix). We performed de novo OTU picking in UCLUST
(Edgar, 2010), and sequences with 97% overlap were defined as
belonging to the same bacterial operational taxonomic unit (OTU).
After this processing, we had a total of 2597 OTUs and an average of
89 483 reads per sample (range 59 817e120 119). To further guard
against sequencing errors, we filtered out OTUs with a frequency
lower than 0.00005 as recommended (Bokulich et al., 2012). After
filtering, the 2007 data set contained 450 OTUs and the 2009 data
set contained 396 OTUs. Themean read depth was 88 346 (range 59
005e118 633). We did not rarefy the data set to an even read depth,
because it is recommended against (McMurdie & Holmes, 2014).
First, rarefying leads to increased false positives and decreased true
positives, especially in data sets with read depths comparable to
ours (Pereira, Wallroth, Jonsson, & Kristiansson, 2018). Second,
unrarefied counts are particularly accurate when using our mea-
sure of beta diversity e weighted UniFrac distances (McMurdie &
Holmes, 2014).

We initially calculated four different measures of gut micro-
biome beta diversity (Sørensen dissimilarity index, BrayeCurtis
dissimilarity index, unweighted UniFrac distances and weighted
UniFrac distances) in the R package ‘vegan’ (Oksanen et al., 2017).
Because the two presence/absence indices were strongly correlated
with each other (Sorenson dissimilarity indices and unweighted
UniFrac distances: Mantel r ¼ 0.93, P ¼ 0.001) as were the two
abundance indices (BrayeCurtis dissimilarity indices and weighted
UniFrac distances: Mantel r ¼ 0.77, P ¼ 0.001), in our analyses, we
only used the one presence/absence index (unweighted UniFrac
distances) and the one abundance index (weighted UniFrac dis-
tances) that take phylogenetic relationships of OTUs into account.

https://github.com/kstagaman/Process_16S
https://github.com/kstagaman/Process_16S
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Figure 1. (a) Social networks for the entire population in 2007 and 2009, where each group member is depicted as a node (circles in different colours/white squares represent
individuals in the different groups that were used/not used for the analyses of behavioural predictors of gut microbiome similarity; see key to symbols) and individuals observed in
1 m proximity are connected with lines. (b) Social networks for females included in the analyses of behavioural predictors of gut microbiome similarity in 2007 and 2009, with lines
connecting between-group dyads (i.e. nodes of different colour) and where line colour represents gut microbiome beta diversity (i.e. unweighted UniFrac distances), ranging from
similar (dark) to dissimilar (light), and thickness indicates social connectedness, ranging from strongly connected (thick) to more disconnected (thin). The black lines connect group
members and are not weighted based on beta diversity or social connectedness.
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Data Analyses

We combined the 2007 and 2009 data sets and included study
year (i.e. season) and individual identity (ID) as predictor variables
whenever possible (i.e. permutational multivariate analysis of
variance and the generalized linear mixed models) while we had to
create squared interaction matrices for each study year separately
when using matrix correlations (i.e. Mantel tests and Moran's test
for autospatial correlations). We only used the full data set (N ¼ 61
samples from 45 females) for the initial analysis regarding the ef-
fect of social group identity. All subsequent analyses examined the
effects of behavioural variables on beta diversity in a subset (N ¼ 49
samples from 42 unique females) from which we removed (1) the
second sample collected from same female in the same year, (2) one
adult female with incomplete dietary information and (3) social
groups fromwhich the majority of females remained unsampled to
make sure we had a representative sample of social connectedness
from each social group.

The initial analysis investigated the effects of season, social
group, individual identity and read depth on beta diversity of all
dyads in the full data set (N ¼ 61 samples from 45 females in 2007
and 2009) using permutational multivariate analysis of variance
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(PERMANOVA) with 10 000 permutations using the ‘adonis’ func-
tion in the R package ‘vegan’ (Oksanen et al., 2017). The terms were
added sequentially in the order listed above.

We used nonparametric Mantel correlations implemented in
the R package ‘vegan’ (Oksanen et al., 2017) to investigate whether
the twomeasures of gut microbiome beta diversity were correlated
with home range separation (0 ¼ same social group and home
range; 1 ¼ different social groups but adjacent home ranges;
2 ¼ different social groups and nonadjacent home ranges) using
beta diversity indices from 30 samples from unique females in six
social groups in 2007 and 19 samples from unique females in three
social groups in 2009. We used beta diversity indices of all dyads,
but analysed the two years separately.

To investigate which combination of dyadic traits predicted gut
microbiome beta diversity between females, we created general-
ized linear mixed models (GLMMs) with the outcome variable gut
microbiome beta diversity using the ‘beta family’ function in the
package ‘glmmTMB’ (version 0.2.3; Brooks et al., 2017) in R (R Core
Team, 2018). Again, we used 30 samples from unique females in six
social groups in 2007 and 19 samples from unique females in three
social groups in 2009. We created a null model that did not contain
any fixed effects, alternative models with one fixed effect that
represented one of the hypotheses outlined in the Introduction
(dietary dissimilarities, R values or social connectedness) and a full
model with all three predictor variables. We included data collec-
tion year as a fixed effect in all alternative models because the two
sampling years occurred in different seasons and several other
studies showed strong seasonal shifts in gut microbiome compo-
sition (Amato et al., 2015; Hicks et al., 2018; Orkin, Campos et al.,
2019; Smits et al., 2017; Springer et al., 2017). All numerical pre-
dictor variables were centred and scaled (Schielzeth, 2010). We
included social group and focal identities as random effects in all
GLMMs, including the null models. We did not have any issues with
collinearity based on low variance inflation factors (VIF) for the full
models (all VIF < 1.43). We evaluated the support for each model
using Akaike's information criterion (AIC) (Akaike, 1974), and this
approach allowed us to determine which hypotheses (diet, relat-
edness or social connectedness) was best supported by our data
(Burnham & Anderson, 2002). In these analyses, two models
received similar support (with a difference in AIC < 4). Therefore,
we took model selection uncertainly into account by averaging
coefficients across these two most well-supported models
(Burnham & Anderson, 2002) using the R package ‘MUMIN’
(Barton, 2013). We present these averaged coefficients in the Re-
sults, and when their 95% confidence intervals did not overlap zero,
we conclude that the fixed effect predicted beta diversity. We also
include the output for each of the well-supported models in the
Appendix (Table A2). In the first set of analyses, we included dyads
that resided in the same social group and dyads that resided in
different social groups. To make sure that the effect of social
connectedness was not driven by the close social bonds within
social groups, we repeated the analyses with between-group dyads
only.

To infer which of the gut microbial taxa may be transmitted via
close proximity, which was a better predictor of beta diversity than
diet and relatedness (see Results), we investigated whether the
abundance of each OTU was correlated with geodesic distance in
the 1 m approach network using Moran's test for autospatial cor-
relations implemented in the package ‘ape’ (Paradis, Claude, &
Strimmer, 2004). We included within-group and between-group
dyads in this analysis (N ¼ 342 dyads). We counted the number
of OTUs in each phylum (or family) that were socially structured
based on the autospatial correlation results. We conducted hyper-
geometric tests to investigate whether this number was higher
than expected by chance based on the total number of OTUs in the
phylum (or family) using the ‘phyper’ function implemented in R. In
all analyses of taxonomic differences, we used the 10% false dis-
covery rate (FDR) to correct P values for multiple testing (sensu
Tung et al., 2015). The gut microbial taxa we expected to be shaped
by sociality are listed in the Appendix, Table A3 (Amato et al., 2017;
Goodfellow et al., 2019; Tung et al., 2015).

RESULTS

Factors Predicting Gut Microbiome Beta Diversity

We investigated the relative effects of year, social group, indi-
vidual ID and read depth in the full data set (PERMANOVA: N ¼ 61
samples collected during 2007e2009). Of the observed variation in
the taxonomic composition of the gut microbiome (i.e. beta di-
versity), individual identity explained the largest percentage
(54e55% depending on which beta diversity index was used as
outcome variable), social group identity explained a more moder-
ate percentage (19e28%), while year explained much smaller per-
centage (8e12%) (Table 1). Read depth did not have a significant
effect on beta diversity (Table 1).

Gut microbiome beta diversity and home range separationwere
correlated in the 2007 data set (N ¼ 870 dyads in 6 social groups,
Mantel tests: unweighted UniFrac distance: r ¼ 0.22, P ¼ 0.002;
weighted UniFrac distance: r ¼ 0.10, P ¼ 0.049) and in the 2009
data set (N ¼ 342 dyads in 3 social groups, Mantel tests: un-
weighted UniFrac distance: r ¼ 0.36, P ¼ 0.005; weighted UniFrac
distance: r ¼ 0.20, P ¼ 0.024), meaning that females residing
farther from each other had less similar gut microbiomes. This
pattern can potentially be explained by group members having
more similar diets, higher relatedness or stronger social connect-
edness than nongroup members (Appendix, Fig. A2).

We created several competing generalized linear mixed models
to investigate which of the three hypotheses best explained
increasing beta diversity with home range separation: dietary
dissimilarity, relatedness or social connectedness, controlling for
data collection year. In our data set with both within-group and
between-group dyads (N ¼ 1212 dyads in 2007e2009), the full
models and the models with social connectedness received the
greatest support (Table 2). Gut microbiome beta diversity was
predicted by year (unweighted UniFrac coefficient
estimate ¼ 0.316, 95% CI: 0.274, 0.357; weighted UniFrac coefficient
estimate ¼ 0.202, 95% CI: 0.154, 0.249), and females had more
similar gut microbiomes during the rainy season of 2007 than
during the dry season of 2009 (Fig. 2). Gut microbiome beta di-
versity was also predicted by social connectedness (unweighted
UniFrac coefficient estimate ¼ -0.085, 95% CI: -0.098, -0.072;
weighted UniFrac coefficient estimate ¼ -0.044, 95% CI: -0.062,
-0.026), and females located further apart in the social network had
less similar gutmicrobiomes (Figs.1, 2). In contrast, gut microbiome
beta diversity was not predicted by diet (unweighted UniFrac co-
efficient estimate ¼ 0.009, 95% CI: -0.004, 0.021; weighted UniFrac
coefficient estimate ¼ -0.016, 95% CI: -0.032, 0.001) or relatedness
(unweighted UniFrac coefficient estimate ¼ 0.002, 95% CI: -0.008,
0.013; weighted UniFrac coefficient estimate ¼ 0.001, 95% CI:
-0.013, 0.015).

To assess whether the effect of social connectedness on gut
microbiome beta diversity was driven by closely connected within-
group dyads having very similar gut microbiomes, we repeated the
analyses with between-group dyads only (N ¼ 966 dyads). The full
models and the social connectedness models were again the
strongest supported models (Table 2). Beta diversity was predicted
by year (unweighted UniFrac coefficient estimate ¼ 0.336, 95% CI:
0.291, 0.381; weighted UniFrac coefficient estimate ¼ 0.232, 95% CI:
0.174, 0.291) and social connectedness (unweighted UniFrac



Table 1
Results from the PERMANOVA with factors added sequentially in the order listed in the table

Beta diversity index Factor df Sums of squares Mean squares F R2 P

Unweighted UniFrac Year 1 0.103 0.103 12.325 0.084 <0.001
Group 7 0.347 0.050 5.943 0.282 <0.001
ID 39 0.663 0.017 2.035 0.538 <0.001
Read depth 1 0.010 0.010 1.185 0.008 0.249

Weighted UniFrac Year 1 0.136 0.136 12.277 0.118 <0.001
Group 7 0.219 0.031 2.812 0.189 <0.001
ID 39 0.639 0.016 1.477 0.553 <0.001
Read depth 1 0.018 0.018 1.637 0.016 0.104

Table 2
The competing GLMMs' fixed effects, Akaike's information criterion (AIC), delta (i.e. difference in AIC between the current model and the best-fit model) and Akaike weights
(i.e. relative likelihood of the model) when including within-group and between-group dyads and only between-group dyads

Outcome variable Fixed effect AIC Delta Weight

Within-group and between-group dyads
Unweighted UniFrac Year þ Social connectedness -5247.30 0.00 0.73

Year þ Social connectedness þ Diet þ Relatedness -5245.28 2.02 0.27
Year þ Diet -5103.63 143.67 0.00
Year þ Relatedness -5060.36 186.94 0.00

e -4940.73 306.58 0.00

Weighted UniFrac Year þ Social connectedness -4684.20 0.00 0.56
Year þ Social connectedness þ Diet þ Relatedness -4683.69 0.51 0.44
Year þ Relatedness -4658.94 25.25 0.00
Year þ Diet -4657.85 26.35 0.00

e -4614.36 69.84 0.00

Between-group dyads
Unweighted UniFrac Year þ Social connectedness -4307.62 0.00 0.76

Year þ Social connectedness þ Diet þ Relatedness -4303.92 3.71 0.12
Year þ Diet -4302.67 4.95 0.06
Year þ Relatedness -4302.44 5.19 0.06

e -4119.55 188.07 0.00

Weighted UniFrac Year þ Social connectedness -3770.21 0.00 0.64
Year þ Social connectedness þ Diet þ Relatedness -3768.91 1.30 0.33
Year þ Diet -3762.64 7.58 0.01
Year þ Relatedness -3761.96 8.25 0.01

e -3713.73 56.48 0.00
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coefficient estimate ¼ -0.046, 95% CI: -0.086, -0.006; weighted
UniFrac coefficient estimate ¼ -0.086, 95% CI: -0.141, -0.031), but
not by diet (unweighted UniFrac coefficient estimate ¼ 0.004, 95%
CI: -0.009, 0.017; weighted UniFrac coefficient estimate ¼ -0.012,
95% CI: -0.031, 0.006) or relatedness (unweighted UniFrac coeffi-
cient estimate ¼ -0.001, 95% CI: -0.013, 0.012; weighted UniFrac
coefficient estimate ¼ -0.009, 95% CI: -0.027, 0.009).
Socially Structured OTUs

Our data set contained OTUs from 14 phyla, of which the most
well represented was Firmicutes, followed by Bacteroidetes, Spiro-
chetes and Verrucomicrobia (Supplementary Material Fig. S1). In
each social group, at least 70% of the OTUs belonged to the phylum
Firmicutes (Supplementary Material Fig. S1) and at least 50% of the
OTUs belonged to the families Lachnospiraceae and Ruminococca-
ceae in the phylum Firmicutes (Supplementary Material Fig. S2).

Social connectedness predicted differences in abundances for 73
of the 396 OTUs in the 2009 data set (Moran's I range: -0.27, -0.14,
all P < 0.05; SupplementaryMaterial Table S1). The number of OTUs
with a significant relationship to social connectedness was greater
than expected in the phylum Firmicutes (hypergeometric test:
N ¼ 64, P < 0.001). The numbers of socially structured OTUs in the
phyla Bacteroidetes (N ¼ 6), Planctomycetes (N ¼ 1), Proteobacteria
(N ¼ 1) and Tenericutes (N ¼ 1) were not greater than expected
based on the total number of OTUs in these phyla (hypergeometric
tests: all P > 0.050). The other phyla did not contain any socially
structured OTUs. Four families had a higher than expected number
of socially structured OTUs: Bacteroidaceae (N ¼ 4), Lachnospir-
aceae (N ¼ 20), Peptococcaceae 2 (N ¼ 1) and Ruminococcaceae
(N ¼ 31) (hypergeometric tests: all P < 0.001). There was also a
greater than expected number of socially structured OTUs in 14 of
34 genera (Fig. 3).

Social connectedness predicted differences in abundances for
one of the 450 OTUs in the 2007 data set (Moran's I range: -0.27,
-0.14, all P < 0.05), which belonged to the phylum Firmicutes, the
family Lachnospiraceae and the genus Roseburia. As a result, these
taxa had a greater than expected number of socially structured
OTUs (hypergeometric tests: all P > 0.001).
DISCUSSION

The aim of this study was to investigate whether the increase in
gut microbiome beta diversity with home range separation in fe-
male colobus monkeys was best explained by diet, relatedness or
sociality. Distance in the proximity network was a better predictor
than diet and relatedness, similar to findings in more social pri-
mates (Amato et al., 2017; Perofsky et al., 2017; Raulo et al., 2017;
Tung et al., 2015). Although these previous studies suggested that
strong social bonds within social groups drive between-group dif-
ferences in the gut microbiome after ruling out the effects of
relatedness and diet, this is the first report of a relationship be-
tween gut microbiome beta diversity and social connectedness
between individuals in different social groups. In contrast, gut
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microbiome dissimilarity between individuals residing in different
social groups did not increase with grooming network distance in
sifakas (Perofsky et al., 2017). These contrasting results may be due
to the nature or frequency of the host population's between-group
interactions. Sifakas rarely engage in direct interactions across
groups even though groups show extensive home range overlap
(Perofsky et al., 2017). Colobus monkeys sometimes engage in
affiliative, sexual and playful behaviours with nongroup members
(Sicotte & MacIntosh, 2004; Teichroeb et al., 2005, 2011), which
differ from the almost exclusively aggressive nature of between-
group encounters in some other taxa. Similar to these colobus
monkeys, mountain gorillas, Gorilla beringei beringei, occasionally
affiliate with members from other social groups (Forcina et al.,
2019) and human foraging societies form extended social net-
works to optimize resource flow (Hamilton, Milne, Walker, Burger,
& Brown, 2007). These extended networks could possibly affect
their gut microbiome in similar ways as documented here in
colobus monkeys.

To determine the consequences of such socially mediated
transmission, the first step is to determine which types of microbes
are transmitted this way. The OTUs associated with social trans-
mission in this study included all taxa (family Porphyr-
omonadaceae and genera Parabacteroides and Coprococcus) that
diverged after a social group fission at our site (Goodfellow et al.,
2019) and genera (Bacteroides, Clostridium and Roseburia) that
were transmitted via grooming and close proximity in howlers
(Amato et al., 2017). The close match in socially transmitted taxa in
howlers and colobus is not particularly surprising given both have a
folivorous diet and low degree of terrestriality, which are factors
that influence the gut microbiome (Perofsky, Lewis, & Meyers,
2019). In contrast, the socially transmitted OTUs in our study did
not overlap with those transmitted via grooming within social
groups of baboons (Tung et al., 2015). This is surprising given the
host species relatively close phylogenetic relationship, but baboons
have a higher degree of terrestriality (Grieneisen et al., 2019), and
the baboon groups incorporate a much higher percentage of grass
corms and grass seeds in their diet (Tung et al., 2015) than our study
groups do. Recent findings show that host phylogeny has a stronger
effect than diet on gut microbiome composition (Amato et al.,
2019), and it is thus possible that while phylogeny has the stron-
gest overall effect on the gut microbiome, the same gut microbial
taxa are structured by sociality in primates with similar lifestyles.

We found that the majority of socially transmitted OTUs
belonged to the most dominant families in our host population and
other folivorous primates (Barelli et al., 2015; Perofsky et al., 2017),
the families Lachnospiraceae and Ruminococcaceae in the phylum
Firmicutes. These taxa are well suited for breaking down hard-to-
digest plant material (Biddle, Stewart, Blanchard, & Leschine,
2013), and it is therefore possible that socially transmitted gut
microbes benefit hosts in terms of improved digestion of mature
leaves, which make up the majority of the colobus diet (Saj &
Sicotte, 2007). Several studies imply that socially mediated trans-
mission benefits the host (Koch & Schmid-Hempel, 2011; Perofsky
et al., 2017; Tung et al., 2015). For example, an experimental studyof
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bumble bees (Bombus terrestris) indicate that socially transmitted
microbes protect the hosts against parasite infections (Koch &
Schmid-Hempel, 2011). Our results support the notion that social
transmissionofgutmicrobes thatbenefit thehostmayoccur inawide
range of gregarious species, including those with relatively low fre-
quencies of social interactions. If social transmission sustains a
healthy gut microbiome (as documented in Koch& Schmid-Hempel,
2011), it could provide an incentive for the formation and mainte-
nance of social bondswithin social groups (Lombardo, 2008;Münger,
Montiel-Castro, Langhans, & Pacheco-L�opez, 2018). Our findings
leave open the as-of-yet unexplored possibility that social trans-
mission of microbes may even explain the occurrence of friendly
between-group encounters, especially in the absence of limiting re-
sources such as fertile females and important food sources.

The results of this paper ultimately lead us to an important
outstanding question, which is how gut microbes are transmitted
among animals that spend considerably less time grooming or in
direct contact than other primates with socially mediated gut
microbe transmission (Amato et al., 2017; Raulo et al., 2017; Tung
et al., 2015). It might be that microbes are transmitted directly
during the occasions we observed nongroup members copulating,
grooming and playing. However, it could also be that the microbes
are transmitted indirectly between hosts when they are touching
shared surfaces within a certain period (Münger et al., 2018). This
reasoning is consistent with spatial proximity predicting the gut
microbiome in other gregarious species with low frequencies of
social behaviours like the Welsh Mountain ponies, Equus ferus
caballus (Antwis, Lea, Unwin, & Shultz, 2018) and in more solitary
species such as North American red squirrels, Tamiasciurus hudso-
nicus (Ren et al., 2017) and gopher tortoises (Gopherus polyphemus)
(Yuan et al., 2015). The occurrences of direct and indirect social
transmission are difficult to tease apart when the two are corre-
lated and when brief physical contact between extragroup mem-
bers often go unnoticed, but carefully designed studies in the future
may be able to address this question.

Finally, relatedness and dietary differences within a seasonwere
not good predictors of beta diversity in comparison to social
connectedness. In contrast, seasonal changes in diet may be asso-
ciated with changes in the colobus gut microbiome, because beta
diversity was higher during the 2009 dry season when their diet
was more diverse than during the 2007 rainy seasonwhen they ate
mostly mature leaves. We will continue to investigate whether this
seasonal dietary switch is linked to changes in the gut microbiome,
as previously reported from other species inhabiting seasonal en-
vironments (Amato et al., 2015; Hicks et al., 2018; Orkin, Campos
et al., 2019; Smits et al., 2017; Springer et al., 2017). These au-
thors concluded that gut microbiome dynamics determine nutrient
uptake and are key for dietary flexibility (Amato et al., 2015; Hicks
et al., 2018; Orkin, Campos et al., 2019; Smits et al., 2017; Springer
et al., 2017), while the potential three-way interaction between
social, dietary and gut microbial dynamics is still poorly under-
stood. An interesting venue for further research is therefore to
investigate whether the gut microbiomes of socially well-
connected individuals map more quickly onto ecological changes,
which could help them adjust to the rapidly changing environ-
ments that many wild animals inhabit today.
Data Availability

All raw data are stored in the PaceLab database hosted by the
University of Calgary. The 16S sequencing data are available from
NCBI's Short Read Archive (https://nam03.safelinks.protection.
outlook.com/?url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbio
project%2F612541&data=02%7C01%7Ceva.wikberg%40utsa.edu%7Cb
6d5395ca95847c55ff208d7c79b1315%7C3a228dfbc64744cb88357b
20617fc906%7C0%7C0%7C637197341169638792&sdata=1fivclVV8oR
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The data used for the analyses presented are available on Mendeley
(https://data.mendeley.com/datasets/gkthnf3gyg/1).
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Appendix

Microbial Taxa Predicted To Be Structured by Social Connectedness

The last aim of this study was to investigate whether social
connectedness was correlated with operational taxonomic unit
(OTU) abundances in certain taxa (Table A3) previously reported as
structured by social relationships (Amato et al., 2017; Tung et al.,
2015). We also expected social connectedness to be correlated
with the abundances of three gut microbial taxa that diverged
between two daughter groups after a group fission (DA and NP in
Fig. A1), becausewe suspected that this patternwas driven by social
network changes (Goodfellow et al., 2019).
DNA Extraction, Amplification and Sequencing Protocols for the Gut
Microbiome Analysis

We extracted DNA from 200 ml of sample using QIAmp DNA
stool extraction protocol with the following modifications. In step
2, we added 50 ml of Proteinase K with overnight lysis before pro-
ceeding to step 3. In step 4, we pipetted all of the supernatant. In
step 5, we used half of the InhibitEX tablet. In step 6, we centrifuged
for 5 min. In step 9, we added 4 ml of RNAse and vortexed the
sample for 15 s. In step 19, we used 50 ml of buffer AE and incubated
it at 10 min. In step 20, we pipetted the same 50 ml of buffer AE back
onto filter and incubated it at room temperature for 15 min. We
centrifuged the sample at full speed for 2 min. Our DNA extraction
protocol did not include a bead-beating step, which could bias
against lysis-resistant taxa such as Gram-positive and spore-
forming bacteria that are less likely to be dependent on direct so-
cial contact for transmission between hosts because they can sur-
vive for prolonged periods outside the host (Pollock, Glendinning,
Wisedchanwet, & Watson, 2018; Yuan, Cohen, Ravel, Abdo, &
Forney, 2012).

We determined the concentration of the extracts using Qubit
dsDNA BR Assay Kit (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, U.S.A.) and diluted products to 2 nM for downstream reactions.
We amplified the bacterial v4 region of the 16S ribosomal RNA gene
using the following 515F and 806R primers containing 50 Illumina
adapter tails and dual indexing barcodes:

515F 50 AATGATACGGCGACCACCGAGATCTACACTAGATCGCT
ATGGTAATTGTGTGCCAGCMGCCGCGGTAA.

806R 50 CAAGCAGAAGACGGCATACGAGATTCACCTAGAGTCAGT
CAGCCGGACTACHVGGGTWTCTAAT.

We set the polymerase chain reactions (PCRs) with 12.5 ml of
NEB Q5 Hot start 2�Mastermix,1.25 ml of 10 mMPrimermix,1 ml of
template DNA and 10.25 ml of MoBio certified DNA free water and
Table A1
Number of adult females (AF) present, sampled and omitted from data analyses with be

Year Group AF group size AF sampled

2007 BS 4 4
DA 5 5
NP 4 4
RT 6 5
SP 4 4
WW 9 9

2009 BO 8 8
BS 6 1
DA 7 2
NP 5 3
OD 6 6
RT 7 2
SP 3 0
WW 7 5
used the following cycling protocol: 98 �C for 30 s (1�) followed by
98 �C for 10 s, 61 �C for 20 s and 72 �C for 20 s (20�), followed by
72 �C for 2 min and 4 �C for ∞. The amplification products were
cleaned up using Ampure XP beads and normalized into a final pool
with an Eppendorf liquid handling robot. Libraries were sequenced
as part of a 150 bp paired-end sequencing run on the Illumina
NextSeq platform following the manufacturer's protocol.

We used a custom pipeline that contained the following steps:
joining pair-end reads; removing low-quality and chimeric reads;
dereplication and dropping unique reads with low abundance;
clustering OTUs; making OTU table; alignment; building a refer-
ence tree; and taxon assignment using FLASH (Magoc & Salzberg,
2011), the FASTX Toolkit (Hannon Lab, 2010) and the USEARCH
pipeline (Edgar, 2010). See https://github.com/kstagaman/Process_
16S and Goodfellow et al. (2019) for further details. We performed
de novo OTU picking in UCLUST (Edgar, 2010), and sequences with
97% overlap were defined as belonging to the same bacterial OTU.
To guard against sequencing errors, we filtered out OTUs with a
frequency lower than 0.00005 as recommended (Bokulich et al.,
2012).
Variation in Predictor and Outcome Variables

Of the females included in the analyses with behavioural pre-
dictor variables (Table A1), dietary dissimilarity (i.e. Sørensen di-
versity index) varied from 0 to 1, dissimilarity in relatedness
calculated as their R value subtracted from 1 ranged from 0.31 to 1,
and social connectedness (i.e. inverse path length or geodesic dis-
tance in the 1 m proximity network) varied from 0 to 1, where
0 represents unconnected dyads (Fig. A2).

In our full data set, mean unweighted UniFrac distances within
the same season and year was 0.052 ± 0.004 for samples collected
from the same individual (N ¼ 4 samples) and 0.205 ± 0.042 for
samples collected from different individuals within the same sea-
son and year (N ¼ 61 samples). The low amount of within-
individual variation in comparison to the between-individual
variation suggests that one sample per individual is representa-
tive of its gut microbiome during that season and sufficient for
analysis of beta diversity. Furthermore, the beta diversity of
matched samples from the same adult female in the 2007 wet
season and the 2009 dry season (N ¼ 22 samples from 11 females)
was lower (0.152 ± 0.031) than the female's mean beta diversity
with samples from a different female and year (0.183 ± 0.021) for
all but one female, and there was a significant difference in beta
diversity between samples from the same versus different females
in this sample (Wilcoxon signed-rank test: N ¼ 11 females,
P < 0.001).
havioural predictor variables

AF omitted Reason for omitting samples

0
1 Incomplete dietary information
0
0
0
0
0
1 Lacked samples from majority of AF
2 Lacked samples from majority of AF
3 Lacked samples from majority of AF
0
2 Lacked samples from majority of AF
e

0

https://github.com/kstagaman/Process_16S
https://github.com/kstagaman/Process_16S


Table A2
The coefficient estimates with their 95% confidence intervals, standard errors and z scores for the fixed effects included in the two most well-supported models predicting
unweighted or weighted UniFrac distances in the data sets for within-group and between-group dyads and between-group dyads only

Outcome variable Fixed effect Coefficient estimate Lower 95% CI Upper 95% CI SE z

Within-group and between-group dyads
Unweighted UniFrac m1: Intercept -1.568 -1.607 -1.529 0.020 -79.370

m1: Year 0.315 0.274 0.356 0.021 15.010
m1: Social connectedness -0.086 -0.098 -0.074 0.006 -14.290
m2: Intercept -1.569 -1.607 -1.530 0.020 -79.580
m2: Year 0.317 0.276 0.358 0.021 15.050
m2: Social connectedness -0.082 -0.095 -0.068 0.007 -12.040
m2: Diet 0.009 -0.004 0.021 0.006 1.340
m2: Relatedness 0.002 -0.008 0.013 0.005 0.410

Weighted UniFrac m1: Intercept -1.621 -1.655 -1.587 0.017 -93.610
m1: Year 0.203 0.156 0.250 0.024 8.400
m1: Social connectedness -0.041 -0.057 -0.025 0.008 -5.130
m2: Intercept -1.620 -1.654 -1.586 0.017 -94.180
m2: Year 0.200 0.152 0.247 0.024 8.270
m2: Social connectedness -0.048 -0.065 -0.030 0.009 -5.330
m2: Diet -0.016 -0.032 0.001 0.008 -1.890
m2: Relatedness 0.001 -0.013 0.015 0.007 0.170

Between-group dyads
Unweighted UniFrac m1: Intercept -1.559 -1.602 -1.515 0.022 0.022

m1: Year 0.335 0.290 0.380 0.023 0.023
m1: Social connectedness -0.046 -0.086 -0.006 0.020 0.020
m2: Intercept -1.560 -1.604 -1.516 0.022 -69.490
m2: Year 0.337 0.292 0.382 0.023 14.600
m2: Social connectedness -0.046 -0.086 -0.007 0.020 -2.290
m2: Diet 0.004 -0.009 0.017 0.007 0.590
m2: Relatedness -0.001 -0.013 0.012 0.006 -0.100

Weighted UniFrac m1: Intercept -1.651 -1.698 -1.604 0.024 -68.680
m1: Year 0.234 0.176 0.292 0.030 7.920
m1: Social connectedness -0.087 -0.142 -0.032 0.028 -3.080
m2: Intercept -1.646 -1.693 -1.598 0.024 -67.990
m2: Year 0.229 0.171 0.287 0.030 7.740
m2: Social connectedness -0.085 -0.140 -0.030 0.028 -3.010
m2: Diet -0.012 -0.031 0.006 0.009 -1.280
m2: Relatedness -0.009 -0.027 0.009 0.009 -0.990
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Table A3
Operational taxonomic units (OTUs) in these phyla, families and genera are expected to be structured by sociality based on previous studies

Taxon Socially structured in 2007 Socially structured in 2009 Reference

Actinobacteria: X X Tung et al. (2015)
Bifidobacteriaceae: NA X Tung et al. (2015)
Bifidobacterium NA X Tung et al. (2015)

Coriobacteriaceae X X Tung et al. (2015)
Bacteroidetes: e e e

Bacteroidaceae: X (✓) e

Bacteroides X ✓ Amato et al. (2017)
Porphyromonadaceae: NA X Goodfellow et al. (2019)
Parabacteroides NA ✓ Goodfellow et al. (2019)

Firmicutes: ✓ (✓) e

Clostridiaceae e e e

Clostridium X ✓ Amato et al. (2017)
Eubacteriaceae e e e

Eubacterium X (✓) e

Lachnospiraceae: ✓ (✓) e

Coprococcus X ✓ Goodfellow et al. (2019)
Lachnospiracea incertae sedis X (✓) e

Roseburia ✓ X Amato et al. (2017)
Peptococcaceae: X (✓) e

Desulfurispora X (✓) e

Ruminococcaceae X (✓) e

Flavonifractor X (✓) e

Subdoligranulum NA (✓) e

Streptococcaceae: NA e e

Streptococcus NA NA Amato et al. (2017)
Veillonellaceae: X X Tung et al. (2015)
Propionispira X (✓) e

Centipeda X (✓) e

Fuscobacteria NA X Tung et al. (2015)
Fusobacteriaceae NA X Tung et al. (2015)
Fusobacterium NA X Tung et al. (2015)

Proteobacteria: e e e

Desulfovibrionaceae e e e

Desulfovibrio X (✓) e

Enterobacteriaceae X X Tung et al. (2015)
Tenericutes: X X Tung et al. (2015)
Anaeroplasmataceae e e e

Asteroleplasma X (✓) e

Mycoplasmataceae NA X Tung et al. (2015)
Mycoplasma NA X Tung et al. (2015)

Predictions were supported ✓; not supported X; no prediction made but structured in our data set (✓); or no prediction made and not structured in our data set (e). Bold
symbols indicate rare taxa (N < 3 OTUs). NA denotes taxa not present in our data set.
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Figure A1. Home ranges and core areas for groups in the main forest fragment at Boabeng-Fiema, Ghana. Solid lines indicate home ranges of groups from which we collected
behavioural data. Dashed lines indicate partial home ranges from other groups present in this forest.
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Figure A2. Comparison of dietary dissimilarity, relatedness dissimilarity and social connectedness for within-group and between-group femaleefemale dyads (Wilcoxon signed-
rank tests: N ¼ 88 samples, all P < 0.001).
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